This module calculates mean-square difference of the Helfand moment for the stress tensor [1][2],
![\delta G^2_{\alpha\beta}(t) := \frac{1}{N}
\bigl\langle [G_{\alpha\beta}(t) - G_{\alpha\beta}(0)]^2 \bigr\rangle
\qquad \alpha, \beta \in \{x, y, z\} \, ,](../../../_images/math/f0f69dacc3d615759aa9d2f08349e0c5c93e8794.png)
where the Helfand moment
is defined as the time
integral of the stress tensor
,

The normalisation with the particle number
renders
finite in the thermodynamic limit. The stress tensor
is obtained from halmd.observables.thermodynamics.stress_tensor(),
and the integral is computed numerically over discrete time intervals
using halmd.observables.utility.accumulator.
The shear viscosity
is obtained from
by virtue of the Einstein–Helfand relation

| [1] | B. J. Alder, D. M. Gass, and T. E. Wainwright, Studies in molecular dynamics. VIII. The transport coefficients for a hard-sphere fluid, J. Chem. Phys. 53, 3813 (1970) [Link]. |
| [2] | S. Viscardy and P. Gaspard, Viscosity in molecular dynamics with periodic boundary conditions, Phys. Rev. E 68, 041204 (2003) [Link]. |
Note
The module returns the sum over all off-diagonal elements,
analogously to
halmd.observables.dynamics.mean_square_displacement.
Construct Helfand moment
This module implements a halmd.observables.dynamics.correlation module.
| Parameters: |
|
|---|
Acquire stress tensor
| Returns: | Stress tensor sample |
|---|
Correlate two stress tensor samples.
| Parameters: |
|
|---|---|
| Returns: | mean-square integral of the off-diagonal elements of the stress tensor |
Module description.
Disconnect module from core.
Construct file writer.
| Parameters: |
|
|---|---|
| Returns: | file writer as returned by file:writer(). |
The argument location specifies a path in a structured file format like H5MD given as a table of strings. It defaults to {"dynamics", self.label, "mean_square_helfand_moment"}.